ST. LOUIS PUBLIC SCHOOLS

Language Companion to the DESE Math Model Curriculum, Grade 2

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant, a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

Essential Measurable	Language Objective	Sentence Frame
Learning Objectives		
Students will recognize that a digit in one place represents 10 times what it represents in the place to its right.	Students will describe orally the pattern between place values using complex sentences.	<pre>equals(place value) is true/false because is the(same as/ is not the same) value as Example: 600 equals 60 tens is true because the hundred place is ten times more than the tens place. 60 X 10 = 600</pre>
Students will read and write a multi-digit whole number.	Students will name and label given numbers in different forms (<i>standard, expanded and word</i>) using complete sentences.	The number is written inThe number written in word form isThe number written in expanded form isExample: The number 4,876 is written in standard form.The number four thousand, eight hundred seventy six written in word form is the number 4,876.The number 4,876 written in word form is four thousand eight hundred seventy sixThe number 4,876 written in word form is four thousand eight hundred seventy sixThe number 4,876 written in expanded form is four thousand eight hundred seventy sixThe number 4,876 written in expanded form is the number 4,876.The number 4,876 written in expanded form is the number 4,876.The number 4,876 written in expanded form is the number 4,876.
Students will compare multi-digit numbers.	Students will compare any given numbers using target vocabulary: <i>is</i> greater than, is less than, is equal to.	The number is greater than The number is less that The number is equal to Example: The number 428 is greater than

Grade 4- Whole Number Place Value

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant,

a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program,

funded by the US department of Education

		348.
Students will record comparisons using <, >, and =.	Students will read aloud comparisons of numbers using the target phrases: greater than, less than, equal to.	<pre> (<, >, =) means that is (less than, greater than, or equal to) Example: 100 < 213 means that one hundred is less than two hundred thirteen.</pre>
Students will round multi-digit whole numbers to any place value.	Students will explain orally the process of rounding numbers using key vocabulary terms: <i>nearest</i> , <i>reasonable</i> , <i>round to</i> , <i>estimate</i> .	The number rounded to the nearest place is It is reasonable because the number is closer tothan Example: The number 428 rounded to the nearest tens place is 430 and is reasonable because the number 428 is closer to 430 than 420.

Essential Measurable Learning Objectives	Language Objective	Sentence Frame
Students will explain and generate equivalent fractions using drawing and models.	Students will explain orally the relationship between equivalent fractions using target vocabulary: <i>equivalent to, equal to, same as,</i> <i>because.</i>	(fraction) is equivalent to (fraction) because Example: 1/2 is equivalent to 2/4 because
Students will use visual models to justify why multiplying or dividing the numerator and denominator by the same number generates an equivalent fraction.	Students will state the process of finding equivalent fractions using logical connectors and conjunctive adverbs: <i>ifthen, because, same as.</i>	An equivalent fraction to is because I multiplied the numerator and denominator by Example: An equivalent fraction to 1/4 is 2/8 because I multiplied the numerator and denominator by 4 as the visual model represents.
Students will demonstrate understanding that the whole used to compare two fractions must be the same.	Students will write the explanation of the concept using the target vocabulary: <i>compare, fractions,</i> <i>whole unit, equivalent, quantity.</i>	I know that and are equivalent fractions because they Example: ½ of the hexagon is equal to 2/6 of the same hexagon because both fractions cover the same quantity of space of the hexagon.
Students will compare two given fractions, using <, >, =, by generating equivalent fractions with common numerators or common denominators using drawings or models.	Students will state the process of finding equivalent fractions using comparative adjectives, nouns and phrases: <i>less than, greater than,</i> <i>equal to, common, denominator,</i> <i>numerator, model.</i>	The fraction is (less than, greater than, or equal to) the fraction because the visual model of shows a(n) (greater, less, or equal) amount than in Example: The fraction ½ is greater than the fraction ¼ because the visual model of ½ shows a greater amount than in ¼.

Grade 4- Fractions Equivalent and Ordering

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant,

a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program,

funded by the US department of Education

Essential Measurable Learning Objectives	Language Objective	Sentence Frame
Students will compare two given fractions using \langle , \rangle , or = by reasoning about the size or their locations on a number line or by comparing them to a benchmark fraction using drawings or models.	Students will explain the concept orally using the target vocabulary: compare, fractions, whole, less than, more than, number line, closer to.	(fraction 1) is(more than, less, than, or equal to)(fraction 2) because(fraction 1) is closer to(0, one half, or 1) and(fraction 2) is closer to(0, ½, or 1). Example: 1/3 is less than ¾ because 1/3 is closer to 0 and ¾ is closer to 1.

Grade 4- Decimal Notation

Essential Measurable Learning Objectives	Language Objective	Sentence Frame
Students will express fractions with denominators of 10 as an equivalent fraction with a denominator of 100.	Students will state the process of finding equivalent fractions using comparative adjectives, nouns and phrases: <i>less than, greater</i> <i>than, equal to, common,</i> <i>denominator, numerator, model.</i>	The two fractions are equivalent when
Students will add two fractions with denominators of 10 and 100.	Students will explain the process of combining two fractions using the key vocabulary: <i>fractions</i> , <i>denominators</i> , <i>plus</i> , <i>add</i> , <i>equal</i> .	To add/ +/: First Then Last The sum is
Students will use decimal notation for fractions with denominators of 10 and 100.	Students will write equivalent statements using conditional tense: <i>I would, I should, I could</i> .	For the fraction, I would write the decimal as Example: <i>For the fraction 5/10, I would</i> <i>write the decimal as 0.5 (five tenths).</i>
Students will compare two decimals to the hundredths by reasoning about their size.	Students will explain the process of comparing two decimals using logical connectors or conjunctive adverbs: <i>ifthen, because, to,</i> <i>same as.</i>	is (greater than, less than, equal to), because
Students will explain that comparing two decimals is valid only when they refer to the same whole.	Students will justify in writing why comparing unequal wholes is invalid using comparative adjectives: greater than, less than, or equal to.	Example: 0.5 of a small pizza is less than 0.5 of a large pizza.
Students will justify the comparison of two decimals by reasoning about the size of the decimals and using a visual model.	Students will compare two decimals in writing using comparative adjectives.	The decimal is (greater than, less than) the decimal because is located to the (left, right) of on the number line. Example: The decimal 0.2 is greater

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant,

a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

		than the decimal 0.17 because 0.2 is located to the right of 0.17 on the number line.
Essential Measurable	Language Objective	Sentence Frame
Learning Objectives		
Students will compare	Students will write a problem	Compare 0.47 and 0.9, and explain
two decimals to the	using comparative adjectives:	which decimal is (greater than, less
hundredths place and	greater than, less than, or equal	<i>than, or equal to)</i> the other?
record the comparison	to.	
using symbols <, >, =.		Example: Decimal 0.47 is less than 0.9
		<i>because 47 hundredths is less quantity than 90 hundredths.</i>

Essential Measurable Learning Objectives	Language Objective	Sentence Frame
Model with objects/drawings to add and subtract fractions (like denominators) within the same whole. All expectations in this unit are limited to fractions with denominators 2, 3, 4, 5, 6, 8, 10, 12, 100.	Students will state the process of adding and subtracting fractions using sequencing words.	<pre>First, I show the fraction (number line, fractions strips, and pattern blocks). Next, I show the fraction Then, I(+, -) my fractional parts. Last, my answer is or To add/ +/_: First Then Last The sum is</pre>
Use visual models with equations to decompose a fraction in more than one way, including decomposing a fraction (like denominators) into a sum of its unit fraction.	Students will explain orally two ways to decompose a fraction using conditional tense: <i>could</i> , <i>should</i> , <i>would</i> .	I could decompose/ by breaking it into I could also decompose/ into
Add and subtract mixed numbers, with like denominators, using equivalent fractions, properties of operations or the relationship between addition and subtraction.	Students will write the process of adding or subtracting mixed fractions using sequencing words: <i>first, next, finally.</i>	Given this equation, first I Next, I Finally, I Example: Given this equation first I rewrite the linear equation in the vertical model. Next, I add or subtraction the parts of the whole. Finally, I add or subtract the whole numbers and write the answer.

Grade 4- Adding and Subtracting Fractions

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant,

a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

Essential Measurable Learning Objectives	Language Objective	Sentence Frame
Solve addition and subtraction word problems, referring to the same whole and with like denominators, using drawing, pictures, and equations.	Students will justify orally the process used to solve the problem using key vocabulary: <i>numerator</i> , <i>denominator</i> , <i>parts</i> , <i>whole</i> , <i>addition and subtraction</i> .	I know My model is I need to know My solution is

Essential Measurable Learning Objectives	Language Objective	Sentence Frame
Students will represent a fraction a/b as a multiple of 1/b using a visual model.	Students will describe in writing their visual model using the key words: <i>plus, equal to, times</i> .	plus is equal to which is also equal to times Example: 1/3 plus 1/3 is equal to 2/3 which is also equal to two times 1/3.
Students will multiply a fraction by a whole number using the understanding that a fraction a/b is a multiple of 1/b using a visual model.	The students will summarize the concept by writing a procedure using key words: <i>compute</i> , <i>convert</i> , <i>product</i> , <i>multiply</i> , <i>fraction</i> , <i>numerator</i> , <i>denominator</i> , <i>simplify</i> .	First, Next, Then, Finally,
Students will solve word problems involving multiplication of a fraction by a whole number by using visual models and equations.	Students will describe the process of solving a word problem with the four square chart using complete sentences.	I know My model is I need to know My solution is I Know Model I Need to Know Solution

Grade 4- Multiplying Fractions by Whole Numbers

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant, a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

Essential Measurable Learning Objectives	Language Objective	Sentence Frame
Students will solve multi-step word problems with whole numbers with whole number answers.	Students will describe orally the process of solving a multi-step word problem using sequence words.	First, I know Then, I need to find Next, to solve the problem Finally my answer is
Students will interpret remainders.	Students will write the meaning of a remainder of a given division problem using complete sentences.	In this problemis the remainder, because when I dividedinto equal groups there were left over. Example: 24 ÷7 In this problem 3 is the remainder, because when I divided 24 into 7 equal
Students will represent problems using equations with a letter standing for the unknown quantity.	Students will describe orally their method for solving a problem with an unknown using target vocabulary: <i>variable, a,</i> <i>represent.</i>	groups there were 3 left over. To solve the problem I must I used the variable (a) to represent an unknown value. To solve for (a) I will
Students will assess the reasonableness of answers using mental computation and estimation strategies including rounding.	Students will defend their answer in writing using the method of their choice (<i>estimation</i> , <i>rounding</i> , <i>or mental math</i>) in a complete sentence.	I know that my answer is reasonable because The evidence to support my answer is (<i>These could be two independent</i> <i>sentence stems. We probably would not</i> <i>use both.</i>)

Grade 4- Problem Solving with Whole Numbers

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant, a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education